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Abstract

The symbol of the Hessian for an aeroelastic optimization model problem is ana-

lyzed. The 
ow is modeled by the small-disturbance full potential equation and the

structure is modeled by an isotropic (von K�arm�an) plate equation. The cost function

consists of both aerodynamic and structural terms. In the new analysis the symbol of

the cost function Hessian near the minimum is computed. The result indicates that

under some conditions, which are likely ful�lled in most applications, the system is

decoupled for the non-smooth components. The result also shows that the structure

part in the Hessian is well-conditioned while the aerodynamic part is ill-conditioned.

Applications of the result to optimization strategies are discussed.

�This research was supported by the National Aeronautics and Space Administration under NASA Con-

tract No. NAS1-19480 while the author was in residence at the Institute for Computer Applications in

Science and Engineering (ICASE), Mail Stop 132C, NASA Langley Research Center, Hampton, VA 23681.

i



1 Introduction

Lately, there is a growing interest in Multidisciplinary Design and Optimization (MDO)

[1]-[4]. An important problem in that �eld is the aeroelastic optimal design problem (for

example, [5]-[7]). In this problem there are two coupled disciplines: aerodynamics and

structural analysis. The problem is to compute the aerodynamic shape and structural rigidity

such that some given cost function is minimized.

The purpose of this paper is to demonstrate new analysis of Hessians for MDO problems

on the above aeroelastic optimization problem and to draw some practical conclusions. The

approach is to consider a simple model problem and compute the symbol of the Hessian near

the minimum for the non-smooth frequencies. The Hessian contains curvature information

which is essential for the solution of ill-conditioned optimization problems. Hessian symbols

were previously computed for smoothing predictions in the development of multigrid one-shot

methods [8]-[11] and lately for the analysis of inviscid aerodynamic optimization problems
[12]. The analysis in this paper indicates that for the non-smooth components the system
is decoupled under certain conditions, which are likely ful�lled in most applications. The

analysis also shows that the structures part in the Hessian is well-conditioned while the
aerodynamics part is ill-conditioned.

One consequence of this result is that if the decoupling condition holds the solution of
such problems can be achieved in two stages. In the �rst stage, the MDO approach should
be taken on a coarse model; that is, the 
ow and the structure equations are considered

simultaneously during the minimization, which is a more complex problem than optimizing
the decoupled individual disciplines problems. In the second stage, a re�ned CFD code for
the 
ow and a detailed �nite element code for structure should be used in a serial algorithm in
which the shape is optimized relative to aerodynamic considerations, followed by structural
optimization limited to a given shape that under 
ow conditions it will twist and bend to the

aerodynamic optimal shape [13, 14]. This approach should result in a good approximation
of the multidisciplinary optimal solution.

A second consequence is that if the decoupling condition does not hold, and thus the two
disciplines are coupled, a multidisciplinary algorithm is necessary and a preconditioner for
the coupled system is necessary to obtain e�ective convergence.

The paper outline is as follows. In Section 2 the optimization problem is formulated.

In Section 3 the necessary conditions for a minimum are derived with the adjoint method

and their relation with the Hessian is discussed. In Section 4 the symbol of the Hessian for
the non-smooth frequencies is derived by using local mode analysis. In Section 5 decoupling

conditions and multidisciplinary preconditioners are derived. In Section 6 applications of
the result are �nally discussed.

2 Problem Formulation

In this section the aeroelastic analysis problem and the optimal design problem are presented.

The aeroelastic analysis problem couples the full potential 
ow equation with the isotropic

von K�arm�an plate equation to give the pressure distribution over the plate, p, and the

plate deformation, W , for a given plate shape, �, and rigidity distribution, D. The design
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problem is to compute the \best" shape and structural rigidity so that a given cost function

is minimized.

The cost function is composed of aerodynamic and structure parts. The aerodynamic

cost function estimates performance by measuring the di�erence, in L2 norm, of the pressure

distribution from a desired one. The structure cost function gives a measure of the structural

weight and penalizes structural deformation.

Since our interest is in a local mode analysis of the Hessian near the minimum, we consider

the small disturbance equations of 
ow over a 
at plate.

2.1 The Flow Model

We choose the full potential equation as a model for the 
ow. It approximates inviscid


ow characteristics and is used in applications for aerodynamic optimal design (for example,

[15]). For the analysis of the cost function's Hessian in the vicinity of the minimum it is
enough to consider small perturbations of the shape from the optimal solution. The resulting
changes in the potential satisfy the steady state small disturbance full potential equation.
The geometry is taken to be half-space 
 = (x; y; z � 0), where the x axis is the stream-
wise coordinate, y is the coordinate perpendicular to the stream and parallel to the plate

(spanwise direction), and z is in the normal direction to the plate.

The Aerodynamic State Equation:

L� = 0 z � 0
B� = C(� +W ) z = 0

(2.1)

with the following de�nitions of the interior operator, L, and boundary operators, B and C,

L = (1 �M2)@xx + @yy + @zz
B = @z

C = U1@x

(2.2)

where U1 is the free stream velocity, M is the Mach number, with the following far-�eld

boundary conditions:
In
ow Boundary Condition

Subsonic: �x = U1

Supersonic: �x = U1 and � = 0 (we assume that the normal free stream velocity, V1, is
zero).

Out
ow Boundary Condition

Subsonic: �x = U1

Supersonic: No Boundary Condition.

The missing low-order terms in the boundary condition of (2.1) vanish if the analysis is
performed around a 
at shape.
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2.2 The Structural Model

The structural model consists of the isotropic von K�arm�an plate equation for the displace-

ment W [16, 17]:

G(D;W ) = �C� z = 0 (2:3)

with the following de�nition of the the operator G:

G(D;W ) = (DWxx)xx + (DWyy)yy + �
h
(DWyy)xx + (DWxx)yy

i
+ 2(1� �)(DWxy)xy; (2:4)

where D is the plate rigidity distribution, � is the 
ow density and � is the Poisson ratio. In

two space dimensions Eq.(2.3) reduces to the beam equation:

(DWxx)xx = �U1�x z = 0: (2:5)

The boundary conditions for the plate are that it is clamped at y = 0 (or at x = 0 for a

beam) and free at the other boundaries:

W (x; 0) = Wy(x; 0) = 0:

However, Eq.(2.3) is elliptic, so the e�ect of a high-frequency error component in the de
ec-
tion W is local, and therefore the plate boundary conditions do not play a role in the local
mode analysis.

2.3 The Cost Function Model

The de�nition of the cost function is not unique and depends on the speci�c application
under consideration. In general the requirement of the aeroelastic optimal design is that it
have maximum aerodynamic performance and minimum structural weight and deformation.

Some of the desired features of the �nal design are in many cases modeled by a set of
inequality constraints, as is the case for the minimum deformation requirement. However,
for the purpose of this paper we will avoid inequality constraints by adding a term to the
cost function which penalizes deformation. In the following the di�erent terms composing
the cost function are discussed.

� The Aerodynamic Performance Term

A common aerodynamic cost function is drag (or drag over lift). However, in inviscid
aerodynamic optimization models a commonly used cost function is pressure matching (for
example, [18]-[22]). In potential models the pressure, p, is related to the potential, �, by the

Bernoulli relation

p = �U1�x:

This results in the following cost function term

F aero =
Z
�
(�x � f�)2d�

where d� is an integration element on the shape �. The target distribution, f�(x; y) 2 L2(�),

is related to the desired pressure distribution, p�(x; y), by the relation

f�(x; y) =
p�(x; y)

�U1

:
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� The Structural Weight Term

Another important factor in aeroelastic design is the resulting weight of the structure. In

practice the weight is measured by the sum of the weights of all the components composing

the structure. In plate models the weight is related with the plate rigidity,D, and is given in

the following table, where E is the Young modulus of elasticity, b and h are the cross section

D weight

beam Ebh3

12
�p
R
� bhdx

plate Et3

12(1��2)
�p
R
� tdxdy

components of the beam, �p is the structural density, and t is the plate's thickness.

In both cases the weight of the structure is proportional to D
1

d where d is the space
dimension:

Fweight /
Z
�
D

1

dd�:

� The Structural Deformation Term

As a result of the pressure, p, exerted on the plate by the 
ow, the structure will deform
its shape byW (bend and twist). In practice the structure is designed so that the amount of
deformation will be constrained not to exceed some given limits. In this model we account
for this requirement by penalizing the deformation which is measured by the work of the

aerodynamic pressure on the plate, pW . This will add to the cost function the following
term (using the Bernoulli relation):

F deform = �U1

Z
�
�xWd�:

2.4 The Optimization Problem

We de�ne the cost function, F = F (�;W;D), to be

F (�;W;D) = 
1

Z
�
(�x � f�)2d� + 
2

Z
�
D

1

dd� + 
3

Z
�
�xWd� (2:6)

where 
1; 
2; 
3 are parameters. The cost function is a map from a function space to IR.

The minimization problem is to �nd a shape function, �, and rigidity distribution, D,

such that the cost function is minimized subject to Eqs.(2.1) and (2.3). We assume the

existence of a solution for both the state equations and for the optimization problem (a
rigorous treatment of existence and uniqueness of solutions is beyond the scope of this
paper).

3 Adjoint Formulation and the Hessian

In this section the necessary conditions for a minimum are derived with the adjoint method

[19]-[24]. The necessary conditions are given as a set of state equations (the analysis prob-

lem), costate equations (the adjoint problem) and design equations (optimality conditions).
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Then the relation between the design equation residuals and the Hessian of the cost function

is discussed. This relation will be used in the next section to derive the Hessian's symbol.

3.1 The Necessary Conditions for a Minimum

The Lagrangian is a functional de�ned by

L(�;W;�;D; �; �; �) = F (�;W;D) +
R
� �
�
B��C(� +W )

�
d�+R


 �L�d
 +
R
� �
�
G(D;W )� �C�

�
d�

(3.1)

where � = �(x; y), � = �(x; y) and � = �(x; y; z) are Lagrange multipliers. The �rst order

necessary conditions for a minimum are derived by the requirement that the �rst order

variation of the Lagrangian vanish (this is known as the adjoint method and the resulting

conditions are known as the Kuhn-Tucker conditions).
When considering the variation of the structure state equation a linearization is per-

formed,

G(D� + ~D;W � + ~W ) = G(D�;W �) +GD(W
�) ~D +GW(D�) ~W + h:o:t: (3:2)

where ~D and ~W are small perturbations of the displacement and rigidity from the optimal
solutionW � and D� respectively, and where the linearized operatorsGD andGW are de�ned
as follows

GD(W
�) ~D = ~DxxW

�

xx +
~DyyW

�

yy + �
h
~DxxW

�

yy +
~DyyW

�

xx

i
+ 2(1 � �) ~DxyW

�

xy

GW(D�) ~W = G(D�; ~W ):
(3.3)

Formally,W � and D� serve as non-constant coe�cients in the linearized structure operator.

In the following the costate and design equations are given.

Costate Equations

�L� = 0 z � 0
�B� + ��C� = F� z = 0

�GW(D�)� + �C� = �FW z = 0
(3.4)

In
ow Boundary Condition
Subsonic: �x = 0

Supersonic: No Boundary Condition

Out
ow Boundary Condition
Subsonic: �x = 0

Supersonic: � = 0 and �x = 0

Design Equations

�C� = 0 z = 0
�GD(W

�)� + FD = 0 z = 0
(3.5)
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where

F� = �2
1(�x � f�)x � 
3Wx

FW = 
3�x

FD = 
2
d
D

1�d

d ;

(3.6)

and where the operators in the adjoint and design equations (3.4-3.5) satisfy

�L = L

�C = �C
�GW(D�) = GW(D�)

�GD(W
�) = GD(W

�):

The adjoint boundary operator �B corresponds to the normal derivative, @z, applied to a

solution of the interior costate PDE, �, when using the adjoint far-�eld boundary conditions.

We assume the existence of a solution to the costate equations.

3.2 The Relation of the Hessian with the Necessary Conditions

If the state and costate equations are satis�ed, in the strong sense, then the variation of the
Lagrangian (3.1) is equal to the variation in the cost function and is given by

�L =
Z
�
~��C�d� +

Z
�

~D
�
�GD(W

�)� + FD

�
d� (3:7)

where ~� and ~D are variations in the design variables. Therefore the quantities multiplying
~� and ~D in (3.7) are the sensitivity gradients of the cost function with respect to the design

variables, when computed on the constraint manifold:

g1 = �C�

g2 = �GD(W
�)� + FD:

(3.8)

The state and costate equations, (2.1), (2.3) and (3.4), give an implicit relation between the

costate variables and the design variables:

� = �(�;D)
� = �(�;D):

(3.9)

Using equations (3.8) and (3.9) we can write the following relation which holds near the

minimum(�� and D� denote the optimal value of the design variables � and D, respectively):

g1(�(�
� + ��;D� + �D)) = H11�� +H12

�D + h:o:t:

g2(D
� + �D; �(�� + ��;D� + �D)) = H21��+H22

�D + h:o:t:
(3.10)

where at the minimum

g1(�(�
�;D�)) = g2(D

�; �(��;D�)) = 0:

We conclude that on the constraint manifold, near the minimum, the Hessian of the cost

function relates the errors in the design variables with the residuals of the design equations

(sensitivity gradients). In the next section we will use this fact to calculate the symbol of

the Hessian.
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4 Derivation of the Hessian's Symbol

In the following section we compute the symbol of the Hessian with local mode analysis.

Hessian symbols were previously computed for smoothing prediction in the development

of multigrid one-shot method [8]-[11] and lately for the analysis of inviscid aerodynamic

optimization problems [12]. In the following the local mode analysis is outlined.

The analysis is performed in the vicinity of the minimum where the design variables are

assumed to have an error �� and �D. We assume that the state and costate equations are

satis�ed and consider the errors in the state and costate variables (��; �W; ��; ��) with respect

to their value at the optimal solution. These errors are assumed to satisfy homogeneous

equations similar to Eqs.(2.1,3.4, 3.5), and a linearization of Eq.(2.3). We then consider the

high-frequency errors in the design variables and compute an explicit solution of the problem

in terms of exponential functions in a half-space. Then with a standard procedure the

problem in a half-space is reduced to the boundary. On the boundary we study the mapping
from the transformed design variables errors to the residuals of the design equations, (g1; g2).
The symbol of this mapping gives the eigenvalues of the Hessian.

4.1 Fourier Representation

We start with the Fourier representation of the solution in a half-space and perform local
mode analysis. Consider errors in the solution of the form

��(x; y) = �̂(!1; !2)e
i(!1x+!2y)

�D(x; y) = D̂(!1; !2)e
i(!1x+!2y):

(4.1)

As a result, the errors in the state and costate variables are assumed to have the following
form:

��(x; y; z) = �̂(!1; !2; !3)e
i(!1x+!2y+!3z)

��(x; y; z) = �̂(!1; !2; !3)e
i(!1x+!2y+!3z)

�W (x; y) = Ŵ (!1; !2)e
i(!1x+!2y)

��(x; y) = �̂(!1; !2)e
i(!1x+!2y):

(4.2)

Before computing the relation between the state and costate error symbols, (�̂; �̂; Ŵ ; �̂), and
the design error symbols, (�̂; D̂), we reduce the problem to the boundary by eliminating !3
from the symbols �̂ and �̂.

4.2 Reduction to the Boundary

The reduction to the boundary is done by eliminating !3 from the symbol expressions using

the interior equations. The following discussion regarding the choice of !3 was done in [12]

and is repeated here for completeness.
The term �� satis�es the interior equation for �:

L�̂(!1; !2; !3)e
i(!1x+!2y+!3z) = 0: (4.3)
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Assuming a non-trivial solution, �̂ 6= 0, Eq.(4.3) results in an algebraic relation between !1,

!2 and !3:

(1�M2)!2
1 + !2

2 + !2
3 = 0: (4:4)

The choice of !3 should be done such that it will result in a physical solution. We di�erentiate

between subsonic and supersonic 
ows.

4.2.1 Subsonic Flow

In the subsonic regime (M < 1) the physical solution is given by

!3 = i
q
!2
1(1 �M2) + !2

2;

which corresponds to decaying solutions:

��(x; y; z) = �̂(!1; !2)e
i(!1x+!2y)e�(

p
!2
1
(1�M2)+!2

2
)z

��(x; y; z) = �̂(!1; !2)e
i(!1x+!2y)e�(

p
!2
1
(1�M2)+!2

2
)z:

In that case the symbols of the boundary operators, B and �B, are given by (recall that B
and �B are the normal derivatives applied to a solution of the interior state and costate PDE
respectively)

B̂ = �̂B = �
q
!2
1(1�M2) + !2

2: (4:5)

4.2.2 Supersonic Flow

We di�erentiate between two supersonic cases which are determined by a 
ow speed denoted
Mc and given by

Mc =

s
1 +

�!2
!1

�2
:

The case 1 �M �Mc results in the same symbols for B̂ and �̂B as for the subsonic 
ow case
(Eq.(4.5)).

In the case Mc < M both signs of !3 in (4.4) correspond to physical solutions. The

positive root correspond to the characteristic which propagates into the shape, �+, and the

negative root correspond to the characteristic which propagates out of the shape, ��, (and
a similar expression for �):

��(x; y; z) = �̂+(!1; !2)e
i(!1x+!2y+

p
j!2

1
(1�M2)+!2

2
jz) + �̂�(!1; !2)e

i(!1x+!2y�
p

j!2
1
(1�M2)+!2

2
jz):

(4:6)

Since the in
ow information does not change as a result of a shape perturbation, the

following holds:
��+(x; y; z) = 0: (4:7)

In the same manner the out
ow characteristic of the adjoint is not changing as a result
of a shape perturbation:

���(x; y; z) = 0: (4:8)
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Therefore

��(x; y; z) = �̂�(!1; !2)e
i(!1x+!2y�

p
j!2

1
(1�M2)+!2

2
jz)

��(x; y; z) = �̂+(!1; !2)e
i(!1x+!2y+

p
j!2

1
(1�M2)+!2

2
jz):

We conclude that for 
ow speeds Mc < M the boundary operator B is antisymmetric,

(with respect to the adjoint operation), and the symbols B̂ and �̂B are given by

B̂ = �i
q
j!2

1(1�M2) + !2
2j

�̂B = i
q
j!2

1(1�M2) + !2
2j:

(4.9)

In all 
ow conditions the multiplication B̂ �̂B results in the same expression:

B̂ �̂B =
���!2

1(1�M2) + !2
2

���: (4:10)

By eliminating !3 from the transformed equations the state and costate 
ow equations can
be written on the surface (!1; !2) which corresponds to the boundary (x; y).

4.3 Treatment of the Structure Equations

In this subsection we give a short note concerning the transformation of the structure state
and costate equations. The structure state and costate equations contain non-constant
coe�cients which should be frozen prior to the local mode analysis. The structure state and

costate error equations are given by (see Eqs.(2.3,3.2,3.4))

GD(W
�) �D +GW(D�) �W = �C�� z = 0

�GW(D�)�� + �C�� = � �FW z = 0
(4.11)

where �D, �W , ��, �� and �� denote the error variables, �FW denotes the error in FW , and the
operators GD and GW are de�ned in (3.3). Since Eqs.(4.11) have variable coe�cients, D�

and W �, it is necessary to freeze them around a point on the boundary. This procedure is

justi�ed as long as the errors in the design variables are highly oscillatory compared to W �

and D�. We denote the values of W �(x; y) and D�(x; y) at a point (x0; y0) on the boundary

by W �

0 and D�

0, respectively.

4.4 The Coupled State and Costate Equations in Fourier Space

In terms of their Fourier representation on the boundary, the state and costate error equations

are given by the following matrix form:

0
BBBBB@

B̂ �Ĉ 0 0

��Ĉ ĜW (D�

0) 0 0

�F̂�� �F̂�W
�̂B � �̂C

F̂W� 0 �̂C �̂GW (D�

0)

1
CCCCCA

0
BBBB@

�̂

Ŵ

�̂

�̂

1
CCCCA =

0
BBBB@

Ĉ�̂

�ĜD(W
�

0 )D̂

0

0

1
CCCCA : (4.12)
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The various symbols are given explicitly by

F̂�� = 2
1!
2
1

F̂�W = �i
3!1
F̂W� = i
3!1

ĜW (D�

0) = D�

0(!
2
1 + !2

2)
2 + l:o:t:

ĜD(W
�

0 ) = �!2
1

�
W �

0xx + �W �

0yy

�
� !2

2

�
W �

0yy + �W �

0xx

�
� !1!2

�
2(1 � �)W �

0xy

�
Ĉ = iU1!1:

(4.13)

Note that the terms originating in the cost function serve as a coupling symmetric block

between the state and costate systems.

4.5 The Symbol of the Hessian

The design equations residuals, in the transformed space, are given by

ĝ1 = �̂C�̂

ĝ2 = �̂GD(W
�

0 )�̂ + F̂DD(D
�

0)D̂
(4.14)

where

F̂DD =

2(1� d)

d2

�
D�

0

� 1�2d

d

and the symbols ĝ1 and ĝ2 are the symbols of the sensitivity gradients g1 and g2, respectively
(see (3.8)).

Inverting the system (4.12) and substituting �̂ and �̂ in the symbol of the design residuals
(4.14) results in a relation between the residuals of the design equations and the errors in

the design variables. In Fourier space, 
ĝ1
ĝ2

!
=

 
Ĥ11 Ĥ12

Ĥ21 Ĥ22

! 
�̂

D̂

!
(4.15)

where the matrix Ĥij is the symbol of the Hessian, as discussed in Sec. 3.2. Ĥ11 is the symbol

of the aerodynamic optimization Hessian, Ĥ22 of the structural optimization Hessian, and

Ĥ12, Ĥ21 are the coupling terms. In the following, the terms Ĥij are given explicitly:

Ĥ11 =
�Ĉ2ĜW (F̂��ĜW + 2�ĈF̂�W )

(B̂ĜW � Ĉ2�)( �̂BĜW � Ĉ2�)
(4:16)

Ĥ12 =
ĈĜD(ĈF̂��ĜW + B̂F̂�W ĜW + �Ĉ2F̂�W )

(B̂ĜW � Ĉ2�)( �̂BĜW � Ĉ2�)
(4:17)

Ĥ21 =
ĈĜD(ĈF̂��ĜW + �̂BF̂�W ĜW + �Ĉ2F̂�W )

(B̂ĜW � Ĉ2�)( �̂BĜW � Ĉ2�)
(4:18)

Ĥ22 = �
ĈĜ2

D(F̂��Ĉ + (B̂ + �̂B)F̂�W )

(B̂ĜW � Ĉ2�)( �̂BĜW � Ĉ2�)
+ F̂DD: (4:19)
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Since ĜW is a fourth order polynomial in !1;2, ĜD; F̂��; B̂ and �̂B are of second order, F̂�W

and Ĉ are �rst order, and F̂D is of zero order, the principal parts of the above expressions

(the asymptotic limits of high-frequencies), are given by

Ĥ11 �
�Ĉ2F̂��

B̂ �̂B
= 2
1U

2
1

!4
1

j!2
1(1 �M2) + !2

2j
(4:20)

Ĥ12 = Ĥ21 �
Ĉ2ĜDF̂��

B̂ �̂BĜW

=
2
1U

2
1

D�

0

!4
1

�
!2
1(W

�

0xx + �W �

0yy) + !2
2(W

�

0yy + �W �

0xx) + 2!1!2(1� �)W �

0xy

�
j!2

1(1�M2) + !2
2j � (!2

1 + !2
2)

2

(4:21)

Ĥ22 � F̂DD =

2(1 � d)

d2

�
D�

0

� 1�2d
d
: (4:22)

Note that for simplicity we assumed a complex representation of the errors, (4.1), and
obtained a complex Hessian symbol. If considering a real representation, i.e.,

��(x; y) = �̂(!1; !2)e
i(!1x+!2y) + �̂conj (!1; !2)e

�i(!1x+!2y)

where �̂conj is the complex conjugate of �̂, and a similar expression for �D, then the resulting
Hessian symbol is real and symmetric.

4.6 Discretization and the Condition Number

In practice the problem is solved numerically and thus discretization is introduced. Therefore

the analysis should be performed in the discrete space and the Hessian will depend on the
speci�c discretization. For the \ideal" discretization, the symbol of the Hessian is equal to
the di�erential one with the substitution

(!1; !2) = (
�1

h1
;
�2

h2
);

where (h1; h2) are the mesh sizes in the (x; y) directions, respectively, and where �1 and �2
vary in the domain [��; �].

Note that \high-frequencies" are those which obey !i � c for some constant, c, which is
determined by the di�erent parameters in the problem. In the discrete space this corresponds

to �i � chi: Since the constant c is independent of the mesh-size h, as the grid is re�ned the

portion of high-frequencies in the spectrum increases and therefore the approximation taken
by the local mode analysis above is more accurate for a larger part of the spectrum. This is

not surprising since as the grid is re�ned its resolution increases while the resolution of the
smooth components remains unchanged.

The maximum eigenvalue of each of the disciplinary Hessians is estimated by

�max = Ĥii(
�

h
):

Unfortunately the lowest eigenvalue cannot be estimated by the procedure above since this

is precisely the spectrum range in which the approximation taken by the local mode analysis

11



does not hold. However, the lowest eigenvalue is a �xed number, independent of the mesh-

size, and therefore the condition number of the Hessian is proportional to �max. For a

two-dimensional 
ow over a beam, (!2 = 0), we get for the aerodynamic part of the Hessian

(see Eq.(4.20))

�max =
2
1U

2
1
�2

j1�M2j
1

h2
:

We conclude that the aerodynamic part of the Hessian is ill-conditioned and its condition

number is increasing as the grid is re�ned (see [12] for further discussion). The structure's

symbol (4.22) approaches a constant, for the high-frequencies, independent of the mesh-size.

We therefore conclude that the structural optimization problem is well-conditioned.

5 On the Coupling Between Aerodynamic and Struc-

tural Design

In the previous section we computed explicitly the Hessian's symbol. The coupling between
the two disciplines, during optimization, is determined both by the o�-diagonal terms in
the symbol of the Hessian and by the smoothness of the design variables. We say that the
optimization problem can be decoupled if (see Eq.(4.15)):

jĤ11�̂j � jĤ12D̂j (5:1)

(or equivalently if jĤ22ĝ1j � jĤ12ĝ2j). If condition (5.1) holds then the aerodynamic opti-
mization problem can be solved at the �rst stage, independent of the structural optimization

problem, setting the structural deformation to zero (W = 0). Then, at the second stage,
the resulting shape and potential are given as inputs to the structural optimization problem
(see more details in the discussion). The solution of this two-stage approach will be a good
approximation of the multidisciplinary solution, in the high-frequencies. We emphasize that
if condition (5.1) does not hold then this procedure will result in a poor approximation of

the multidisciplinary optimal solution. In that case a multidisciplinary preconditioner
should be constructed to give a \corrected" disciplinary search directions. This is done by

transforming Eq.(4.15) back to the PDE level. Note that if jĤ21�̂j � jĤ22D̂j holds and
condition (5.1) does not hold, the process of �rst computing an optimal structure and then
computing an optimal shape is not well de�ned. In the following we examine condition (5.1)
explicitly for two- and three-dimensional 
ows and illustrate the derivation of a precondi-

tioner for a simple case.

5.1 Two Space Dimensions

In a two dimensional 
ow over a beam the principal part of the Hessian is given by (see

Eqs.(4.20)-(4.22))

Ĥ(!1 � 1) = 2

0
B@


1U
2
1

j1�M2
j
!2
1


1U
2
1

j1�M2
j

W �

0xx

D�
0


1U
2
1

j1�M2
j

W �

0xx

D�
0

�1

8

2D

��
3

2

0

1
CA : (5.2)
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In practice the curvature of the de
ection in the stream-wise direction, W �

0xx, is negligible

with respect to the rigidity, D�

0, as is the case for airfoils. SettingW
�

0xx = 0 in (5.2) results in

a diagonal matrix which implies a complete decoupling between aerodynamic and structure

design.

In case W �

0xx is not negligible, let us assume the optimal solution exists and belongs to

the following spaces

� 2 Cs(�) and D 2 Ck(�)

where s and k are integers. The matrix (5.2) implies

Ĥ11�̂ / !2�s

Ĥ12D̂ / !�k
(5.3)

and therefore the decoupling condition (5.1) is satis�ed if

k > s� 2 (5:4)

i.e., as long as the rigidity D is not much more \rough" than the shape � (D 2 Cs�2(�) or

rougher).
In case condition (5.4) is not satis�ed a preconditioner should be constructed. The

disciplinary search directions, �� and �D, are solutions of a PDE which is obtained by the
inverse transform of Eq.(4.15):

�ac��xx � b2�� = cg1 � bg2
�ac �Dxx � b2 �D = �bg1 � a(g2)xx

(5.5)

with

a = 2
1U
2
1

j1�M2
j

b = 2
1U
2
1

j1�M2
j

W �

xx

D�

c = �1
4

2D

��
3

2 :

Using these directions as the search directions, in a multidisciplinary optimization algorithm,

should result in a much more e�ective convergence properties.

5.2 Three Space Dimensions

In a three dimensional con�guration we di�erentiate between the stream-wise and spanwise
directions. Let us assume that the curvature of the de
ection in the stream-wise direction
is negligible, i.e. set W �

0xx = 0. As a result the coupling term Ĥ12 has the following form:

Ĥ12(W
�

0xx = 0) � 2
1U
2
1

D�

0

!4
1

�
!2
1�W

�

0yy + !2
2W

�

0yy + 2!1!2(1 � �)W �

0xy

�
j!2

1(1�M2) + !2
2j � (!2

1 + !2
2)

2
: (5:6)

For the design of the structure in the spanwise direction only, i.e., freezing the stream-wise

design as done in practice for aircraft wing design, the o�-diagonal terms in the Hessian

vanish, (!1 = 0), and therefore the problem is decoupled.
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For errors in the stream-wise direction only, (i.e. !2 = 0), the o�-diagonal terms in the

Hessian reduce to

Ĥ12(!2 = 0) �
2
1U

2
1
�W �

0yy

D�

0j1�M2j :

By a similar argument to the two-dimensional case, if � 2 Cs(�) and D 2 Cs�1(�) or

smoother then the problem can be decoupled. If the structure design variables belong to a

much rougher space than the shape variables, (D 2 Cs�2 or rougher), then a preconditioner

should be applied similar to Eq.(5.5) with

a = 2
1U
2
1

j1�M2
j

b = 2
1U
2
1

j1�M2
j

�W �

yy

D�

c = �2

9

2D

��
5

3 :

The case � 2 Cs and D 2 Cs�2 needs a more careful examination. In this special case,
the decoupling condition (5.1) implies

jĤ12j � jĤ11j )
����W �

0yy

D�

0

���� 1: (5:7)

Let us assume a wing like geometry where a plate of length L is clamped at (y = 0) and free
at the other boundaries. Assume that at the optimal solution the plate is bent towards the
tip (y = L) as a quadratic in y,

W �(x; y) = W tip y
2

L2
; (5:8)

where W tip is the maximum de
ection at the tip of the plate. In that case, the decoupling
condition (5.7) becomes ���24(1 � �2)�W tip

Et3L2

���� 1; (5:9)

where E is the Young modulus of elasticity, � is the Poisson ratio and t is the plate thick-
ness. In case condition (5.9) is not satis�ed then the problem can not be decoupled and a

preconditioner is required.

6 Discussion and Concluding Remarks

The symbol of the Hessian for aeroelastic optimization model problemwas computed (Eqs.(4.16-
4.19)). The result indicates that for the non-smooth components the system is decoupled

under certain conditions. In two dimensions it is enough to assume that the curvature of

the de
ection is negligible, as is the case for airfoils, to obtain decoupling (see Sec.5.1 for

further discussion of the decoupling condition). In three dimensions this requirement is not

enough and unless the rigidity is not much rougher than the shape the system is coupled
(see Sec.5.2).

The result also shows that the aerodynamic optimization problem is ill-conditioned, and

therefore second order information is essential for e�ciently solving this part of the problem
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[12], while the structural optimization problem is well conditioned. Thus, it is anticipated

that the number of optimization iterations required to solve the multidisciplinary problem

is determined by the aerodynamic optimization part of the problem.

We now discuss the application of this result to optimization strategies for the solution

of the problem. We di�erentiate between two basic approaches, the \disciplinary" and the

\multidisciplinary". In the disciplinary approach the solution of the problem is divided so

that one discipline optimization problem is solved at each stage, decoupled from the other

discipline. In the multidisciplinary approach both the analysis and optimization solutions

are performed in a tightly coupled manner. These two approaches are now presented in more

detail.

� The Disciplinary Approach - Weak Coupling

A common practical strategy used to solve large aeroelastic shape optimization prob-

lems is the disciplinary approach, i.e., design the aerodynamic optimal shape to give
the best performance and then design a minimum weight structure, restricted to the
aerodynamic shape, that under 
ow will twist and bend to the aerodynamic optimal

shape [13, 14]:

The Disciplinary Algorithm

1. The aerodynamic shape optimization problem is solved setting W = 0,

min�
R
�(�x � f�)2 d�

subject to

L� = 0 z � 0

B� = C� z = 0:

2. The structure minimum weight problem is solved given a fixed

shape and pressure (potential) distribution, i.e.

minD 

R
�D

1

dd� + 
0
R
� �xWd�

subject to

G(D;W ) = �C� z = 0

where 
 and 
0 are parameters.

3. The final shape, �, is computed such that under cruise

conditions, (given pressure distribution - p), the shape will

deform into the aerodynamic optimal shape �.
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� The Multidisciplinary Approach - Tight Coupling

Lately there has been an e�ort to develop new optimization strategies which couple

the two disciplines tightly during the analysis and optimization computation. This is

known as the MDO approach [1]-[7]. According to this approach after each call to the

optimizer the analysis and adjoint equations are relaxed, or solved exactly, depending

on the feasibility choice (Multi-Disciplinary Feasibility (MDF), Individual Discipline

Feasibility (IDF) or All at Once (AAO), [3]).

The MDO Algorithm

The coupled aerodynamic shape and structure minimum weight optimization

problems are solved simultaneously. In order to achieve efficient conve-

rgence both disciplines gradients play a role in each disciplinary

optimizer (see Eq.(5.5)),

min�;D 
1
R
�(�x � f�)2 dx+ 
2

R
�D

1

ddx + 
3
R
� �xWdx

subject to

L� = 0 z � 0

B� = C(�+W ) z = 0

G(D;W ) = �C� z = 0:

The aim of the MDO approach is to couple a re�ned CFD code with a detailed �nite-
element structural analysis code to compute the aeroelastic states prior to each optimization

iteration. The computational complexity of the MDO algorithm is much greater than that
of the disciplinary algorithm since at each multidisciplinary iteration both the aerodynamic
and structural optimization problems have to be solved (the MDO approach also introduces
a technical di�culty of joining together two large codes). The result of this paper shows that

under certain conditions, given in Sec.5, which are most likely met for aircraft wing design,

the system is decoupled for the non-smooth frequencies. Therefore, under these conditions
the MDO approach applied on a �ne scale model might not be necessary to obtain a good

approximation of the optimal solution. The e�ect of the smooth components can be captured
by a coarse model containing a relatively small number of design variables and thus can be

solved by the MDO approach with a relatively low computational cost. This will require

simple models for the 
ow (panel method or small disturbance full potential on a coarse
grid) coupled with a plate model, or coarse �nite-element model, for the structure.

If indeed the decoupling condition holds, as discussed, we propose that the problem be

solved in two stages as illustrated in Fig.1. In the �rst stage, the MDO approach will be

applied on a coarse model. The second stage starts with the solution of the MDO algorithm
and the re�ned problem is solved with the disciplinary algorithm, thus avoiding the enormous

complexity of the MDO algorithm when applied on the �ne scale model. We claim that the

resulting design will be a good approximation of the optimal solution. We emphasize that
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this is possible due to the loose coupling between the two disciplines, otherwise the proposed

approach will result in a poor approximation of the optimal design since the result will retain

high residuals of the multidisciplinary optimality conditions. In that case the MDO approach

should be applied also on �ne scales and a preconditioner should be used, as illustrated in

Eq.(5.5), to achieve e�ective convergence.

Finally, how far can we extrapolate the conclusions from this model problem to a more

realistic model?

As for the aerodynamic model, it is shown in [12] that an identical symbol for the aerody-

namic part of the Hessian is obtained when using Euler equations instead of the full potential.

The analysis for the Navier-Stokes equations has not been completed yet. Shocks were also

neglected in the aerodynamic model, but we postulate that they are not going to change the

main conclusion since shocks have a global e�ect and are not likely to a�ect the conditioning

of the Hessian.

As for the speci�c modeling which we have chosen to analyze, since there are many
di�erent models for the cost function and di�erent constraints depending on the application,
it is impractical to analyze them all. In the model discussed in this paper we used a penalty

term in the cost function to account for constraints on the structure deformation. However,
if using inequality constraints instead of penalty terms it is not clear how the coupling of the
two disciplines will be a�ected. In practice most of the constraints are not binding at the
solution, and therefore are e�ectively of small number. When introduced in small numbers,
we anticipate that they are not going to change the basic structure of the Hessian near the

minimum.
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Figure 1: An optimization strategy to solve aeroelastic optimization problems in case of

decoupling as de�ned in Sec.5. Apply the MDO approach on a coarse model followed by a
disciplinary serial approach on �ne scales. The result should be a good approximation of the
multidisciplinary optimal solution.
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